Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Arch Dermatol Res ; 316(4): 99, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446274

ABSTRACT

This paper presents the most current and innovative solutions applying modern digital image processing methods for the purpose of skin cancer diagnostics. Skin cancer is one of the most common types of cancers. It is said that in the USA only, one in five people will develop skin cancer and this trend is constantly increasing. Implementation of new, non-invasive methods plays a crucial role in both identification and prevention of skin cancer occurrence. Early diagnosis and treatment are needed in order to decrease the number of deaths due to this disease. This paper also contains some information regarding the most common skin cancer types, mortality and epidemiological data for Poland, Europe, Canada and the USA. It also covers the most efficient and modern image recognition methods based on the artificial intelligence applied currently for diagnostics purposes. In this work, both professional, sophisticated as well as inexpensive solutions were presented. This paper is a review paper and covers the period of 2017 and 2022 when it comes to solutions and statistics. The authors decided to focus on the latest data, mostly due to the rapid technology development and increased number of new methods, which positively affects diagnosis and prognosis.


Subject(s)
Artificial Intelligence , Skin Neoplasms , Humans , Skin , Skin Neoplasms/diagnosis , Skin Neoplasms/epidemiology , Canada , Image Processing, Computer-Assisted
2.
Heliyon ; 10(2): e24557, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298676

ABSTRACT

Aim of this paper is to evaluate short and long-term changes in T2 relaxation times after radiotherapy in patients with low and intermediate risk localized prostate cancer. A total of 24 patients were selected for this retrospective study. Each participant underwent 1.5T magnetic resonance imaging on seven separate occasions: initially after the implantation of gold fiducials, the required step for Cyberknife therapy guidance, followed by MRI scans two weeks post-therapy and monthly thereafter. As part of each MRI scan, the prostate region was manually delineated, and the T2 relaxation times were calculated for quantitative analysis. The T2 relaxation times between individual follow-ups were analyzed using Repeated Measures Analysis of Variance that revealed a significant difference across all measurements (F (6, 120) = 0.611, p << 0.001). A Bonferroni post hoc test revealed significant differences in median T2 values between the baseline and subsequent measurements, particularly between pre-therapy (M0) and two weeks post-therapy (M1), as well as during the monthly interval checks (M2 - M6). Some cases showed a delayed decrease in relaxation times, indicating the prolonged effects of therapy. The changes in T2 values during the course of radiotherapy can help in monitoring radiotherapy response in unconfirmed patients, quantifying the scarring process, and recognizing the therapy failure.

3.
Sci Rep ; 14(1): 630, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182757

ABSTRACT

Assessment of fetal heart rate (fHR) through non-invasive fetal electrocardiogram (fECG) is challenging task. This study compares the performance of five template subtraction (TS) methods on Labor (12 5-min recordings) and Pregnancy datasets (10 20-min recordings). The methods include TS without adaptation, TS using singular value decomposition (TS[Formula: see text]), TS using linear prediction (TS[Formula: see text]), TS using scaling factor (TS[Formula: see text]), and sequential analysis (SA). The influence of the chosen maternal wavelet for the continuous wavelet transform (CWT) detector is also compared. The F1 score was used to measure performance. Each recording in both datasets consisted of four signals, resulting in a total comparison of 88 signals for the TS-based methods. The study reported the following results: F1 = 95.71% with TS, F1 = 95.93% with TS[Formula: see text], F1 = 95.30% with TS[Formula: see text], F1 = 95.82% with TS[Formula: see text], and F1 = 95.99% with SA. The study identified gaus3 as the suitable maternal wavelet for fetal R-peak detection using the CWT detector. Furthermore, the study classified signals from the tested datasets into categories of high, medium, and low quality, providing valuable insights for subsequent fECG signal extraction. This research contributes to advancing the understanding of non-invasive fECG signal processing and lays the groundwork for improving fetal monitoring in clinical settings.


Subject(s)
Fetus , Prenatal Care , Female , Pregnancy , Humans , Electrocardiography , Fetal Monitoring , Heart Rate, Fetal
4.
Heliyon ; 9(11): e21639, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027596

ABSTRACT

For the past decade, there has been a significant increase in customer usage of public transport applications in smart cities. These applications rely on various services, such as communication and computation, provided by additional nodes within the smart city environment. However, these services are delivered by a diverse range of cloud computing-based servers that are widely spread and heterogeneous, leading to cybersecurity becoming a crucial challenge among these servers. Numerous machine-learning approaches have been proposed in the literature to address the cybersecurity challenges in heterogeneous transport applications within smart cities. However, the centralized security and scheduling strategies suggested so far have yet to produce optimal results for transport applications. This work aims to present a secure decentralized infrastructure for transporting data in fog cloud networks. This paper introduces Multi-Objectives Reinforcement Federated Learning Blockchain (MORFLB) for Transport Infrastructure. MORFLB aims to minimize processing and transfer delays while maximizing long-term rewards by identifying known and unknown attacks on remote sensing data in-vehicle applications. MORFLB incorporates multi-agent policies, proof-of-work hashing validation, and decentralized deep neural network training to achieve minimal processing and transfer delays. It comprises vehicle applications, decentralized fog, and cloud nodes based on blockchain reinforcement federated learning, which improves rewards through trial and error. The study formulates a combinatorial problem that minimizes and maximizes various factors for vehicle applications. The experimental results demonstrate that MORFLB effectively reduces processing and transfer delays while maximizing rewards compared to existing studies. It provides a promising solution to address the cybersecurity challenges in intelligent transport applications within smart cities. In conclusion, this paper presents MORFLB, a combination of different schemes that ensure the execution of transport data under their constraints and achieve optimal results with the suggested decentralized infrastructure based on blockchain technology.

5.
J Adv Res ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37839503

ABSTRACT

INTRODUCTION: The Industrial Internet of Water Things (IIoWT) has recently emerged as a leading architecture for efficient water distribution in smart cities. Its primary purpose is to ensure high-quality drinking water for various institutions and households. However, existing IIoWT architecture has many challenges. One of the paramount challenges in achieving data standardization and data fusion across multiple monitoring institutions responsible for assessing water quality and quantity. OBJECTIVE: This paper introduces the Industrial Internet of Water Things System for Data Standardization based on Blockchain and Digital Twin Technology. The main objective of this study is to design a new IIoWT architecture where data standardization, interoperability, and data security among different water institutions must be met. METHODS: We devise the digital twin-enabled cross-platform environment using the Message Queuing Telemetry Transport (MQTT) protocol to achieve seamless interoperability in heterogeneous computing. In water management, we encounter different types of data from various sensors. Therefore, we propose a CNN-LSTM and blockchain data transactional (BCDT) scheme for processing valid data across different nodes. RESULTS: Through simulation results, we demonstrate that the proposed IIoWT architecture significantly reduces processing time while improving the accuracy of data standardization within the water distribution management system. CONCLUSION: Overall, this paper presents a comprehensive approach to tackle the challenges of data standardization and security in the IIoWT architecture.

6.
Sensors (Basel) ; 23(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37896587

ABSTRACT

This article presents a comprehensive system for testing and verifying shunt active power filter control methods. The aim of this experimental platform is to provide tools to a user to objectively compare the individual control methods. The functionality of the system was verified on a hardware platform using least mean squares and recursive least squares algorithms. In the experiments, an average relative suppression of the total harmonic distortion of 22% was achieved. This article describes the principle of the shunt active power filter, the used experimental platform of the controlled current injection source, its control system based on virtual instrumentation and control software and ends with experimental verification. The discussion of the paper outlines the extension of the experimental platform with the cRIO RTOS control system to reduce the latency of reference current generation and further planned research including motivation.

7.
Sci Rep ; 13(1): 14392, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658080

ABSTRACT

The paper presents evaluation of the proposed phonocardiography (PCG) measurement system designed primarily for heartbeat detection to estimate heart rate (HR). Typically, HR estimation is performed using electrocardiography (ECG) or pulse wave as one of the fundamental diagnostic methodologies for assessing cardiac function. The system includes novel both sensory part and data processing procedure, which is based on signal preprocessing using Wavelet Transform (WT) and Shannon energy computation and heart sounds classification using K-means. Due to the lack of standardization in the placement of PCG sensors, the study focuses on evaluating the signal quality obtained from 7 different sensor locations on the subject's chest and investigates which locations are most suitable for recording heart sounds. The suitability of sensor localization was examined in 27 subjects by detecting the first two heart sounds (S1, S2). The HR detection sensitivity related to reference ECG from all sensor positions reached values over 88.9 and 77.4% in detection of S1 and S2, respectively. The placement in the middle of sternum showed the higher signal quality with median of the proper S1 and S2 detection sensitivity of 98.5 and 97.5%, respectively.


Subject(s)
Heart Sounds , Humans , Phonocardiography , Heart Rate , Electrocardiography , Sternum
8.
PLoS One ; 18(6): e0286858, 2023.
Article in English | MEDLINE | ID: mdl-37279195

ABSTRACT

The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother's chest.


Subject(s)
Fetal Monitoring , Signal Processing, Computer-Assisted , Pregnancy , Female , Humans , Fetal Monitoring/methods , Algorithms , Fetus , Electrocardiography/methods
9.
Comput Biol Med ; 163: 107135, 2023 09.
Article in English | MEDLINE | ID: mdl-37329623

ABSTRACT

Brain-computer interfaces are used for direct two-way communication between the human brain and the computer. Brain signals contain valuable information about the mental state and brain activity of the examined subject. However, due to their non-stationarity and susceptibility to various types of interference, their processing, analysis and interpretation are challenging. For these reasons, the research in the field of brain-computer interfaces is focused on the implementation of artificial intelligence, especially in five main areas: calibration, noise suppression, communication, mental condition estimation, and motor imagery. The use of algorithms based on artificial intelligence and machine learning has proven to be very promising in these application domains, especially due to their ability to predict and learn from previous experience. Therefore, their implementation within medical technologies can contribute to more accurate information about the mental state of subjects, alleviate the consequences of serious diseases or improve the quality of life of disabled patients.


Subject(s)
Artificial Intelligence , Brain-Computer Interfaces , Humans , Quality of Life , Algorithms , Machine Learning , Computers , Brain
10.
Sci Rep ; 13(1): 10440, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369726

ABSTRACT

In recent times, widely understood spine diseases have advanced to one of the most urgetn problems where quick diagnosis and treatment are needed. To diagnose its specifics (e.g. to decide whether this is a scoliosis or sagittal imbalance) and assess its extend, various kind of imaging diagnostic methods (such as X-Ray, CT, MRI scan or ST) are used. However, despite their common use, some may be regarded as (to a level) invasive methods and there are cases where there are contraindications to using them. Besides, which is even more of a problem, these are very expensive methods and whilst their use for pure diagnostic purposes is absolutely valid, then due to their cost, they cannot rather be considered as tools which would be equally valid for bad posture screening programs purposes. This paper provides an initial evaluation of the alternative approach to the spine diseases diagnostic/screening using inertial measurement unit and we propose policy-based computing as the core for the inference systems. Although the methodology presented herein is potentially applicable to a variety of spine diseases, in the nearest future we will focus specifically on sagittal imbalance detection.


Subject(s)
Expert Systems , Scoliosis , Humans , Scoliosis/diagnostic imaging , Radiography , Magnetic Resonance Imaging , X-Rays , Spine/diagnostic imaging
11.
Sci Rep ; 13(1): 4124, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914679

ABSTRACT

Industrial Internet of Things (IIoT) is the new paradigm to perform different healthcare  applications with different services in daily life. Healthcare applications based on IIoT paradigm are widely used to track patients health status using remote healthcare technologies. Complex biomedical sensors exploit wireless technologies, and remote services in terms of industrial workflow applications to perform different healthcare tasks, such as like heartbeat, blood pressure and others. However, existing industrial healthcare technoloiges still has to deal with many problems, such as security, task scheduling, and the cost of processing tasks in IIoT based healthcare paradigms. This paper proposes a new solution to the above-mentioned issues and presents the deep reinforcement learning-aware blockchain-based task scheduling (DRLBTS) algorithm framework with different goals. DRLBTS provides security and makespan efficient scheduling for the healthcare applications. Then, it shares secure and valid data between connected network nodes after the initial assignment and data validation. Statistical results show that DRLBTS is adaptive and meets the security, privacy, and makespan requirements of healthcare applications in the distributed network.


Subject(s)
Blockchain , Humans , Algorithms , Awareness , Biomedical Technology , Delivery of Health Care , Computer Security
12.
BMC Pregnancy Childbirth ; 23(1): 33, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36647041

ABSTRACT

On the outbreak of the global COVID-19 pandemic, high-risk and vulnerable groups in the population were at particular risk of severe disease progression. Pregnant women were one of these groups. The infectious disease endangered not only the physical health of pregnant women, but also their mental well-being. Improving the mental health of pregnant women and reducing their risk of an infectious disease could be achieved by using remote home monitoring solutions. These would allow the health of the mother and fetus to be monitored from the comfort of their home, a reduction in the number of physical visits to the doctor and thereby eliminate the need for the mother to venture into high-risk public places. The most commonly used technique in clinical practice, cardiotocography, suffers from low specificity and requires skilled personnel for the examination. For that and due to the intermittent and active nature of its measurements, it is inappropriate for continuous home monitoring. The pandemic has demonstrated that the future lies in accurate remote monitoring and it is therefore vital to search for an option for fetal monitoring based on state-of-the-art technology that would provide a safe, accurate, and reliable information regarding fetal and maternal health state. In this paper, we thus provide a technical and critical review of the latest literature and on this topic to provide the readers the insights to the applications and future directions in fetal monitoring. We extensively discuss the remaining challenges and obstacles in future research and in developing the fetal monitoring in the new era of Fetal monitoring 4.0, based on the pillars of Healthcare 4.0.


Subject(s)
COVID-19 , Pandemics , Pregnancy , Female , Humans , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Fetal Monitoring , Cardiotocography/methods , Prenatal Care
13.
PLoS One ; 18(1): e0279988, 2023.
Article in English | MEDLINE | ID: mdl-36595512

ABSTRACT

The article presents a novel strategy for reducing the geometric error of a vehicle headlamp equipped with a set of calibration screws, which represents a product assembly. Using a general method for designing and implementing a digital twin, we determined the optimal configuration for a compensatory element that minimizes the total geometric error. Formulated as a problem of constrained minimization, we solved the error using the gradient method and the Broyden-Fletcher-Goldfarb-Shanno method. Products are automatically adjusted according to this optimal setting during the manufacturing process. The results of this novel method indicate that all points can be aligned when the non-individual calibration satifies a geometrical specification of 92%. The digital twin approach was compared to the manufacturing process on 84,055 samples. Overall, 98.19% of the samples were perfectly aligned.


Subject(s)
Algorithms
14.
Sci Rep ; 13(1): 109, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596841

ABSTRACT

Fetal alcohol spectrum disorders (FASD) are spectrum of neurodevelopmental conditions associated with prenatal alcohol exposure. The FASD manifests mostly with facial dysmorphism, prenatal and postnatal growth retardation, and selected birth defects (including central nervous system defects). Unrecognized and untreated FASD leads to severe disability in adulthood. The diagnosis of FASD is based on clinical criteria and neither biomarkers nor imaging tests can be used in order to confirm the diagnosis. The quantitative electroencephalography (QEEG) is a type of EEG analysis, which involves the use of mathematical algorithms, and which has brought new possibilities of EEG signal evaluation, among the other things-the analysis of a specific frequency band. The main objective of this study was to identify characteristic patterns in QEEG among individuals affected with FASD. This study was of a pilot prospective study character with experimental group consisting of patients with newly diagnosed FASD and of the control group consisting of children with gastroenterological issues. The EEG recordings of both groups were obtained, than analyzed using a commercial QEEG module. As a results we were able to establish the dominance of the alpha rhythm over the beta rhythm in FASD-participants compared to those from the control group, mostly in frontal and temporal regions. Second important finding is an increased theta/beta ratio among patients with FASD. These findings are consistent with the current knowledge on the pathological processes resulting from the prenatal alcohol exposure. The obtained results and conclusions were promising, however, further research is necessary (and planned) in order to validate the use of QEEG tools in FASD diagnostics.


Subject(s)
Epilepsy , Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Humans , Child , Female , Pregnancy , Adult , Fetal Alcohol Spectrum Disorders/diagnosis , Fetal Alcohol Spectrum Disorders/pathology , Prospective Studies , Prenatal Exposure Delayed Effects/pathology , Brain/pathology , Epilepsy/pathology , Electroencephalography
15.
IEEE J Biomed Health Inform ; 27(2): 664-672, 2023 02.
Article in English | MEDLINE | ID: mdl-35394919

ABSTRACT

These days, the usage of machine-learning-enabled dynamic Internet of Medical Things (IoMT) systems with multiple technologies for digital healthcare applications has been growing progressively in practice. Machine learning plays a vital role in the IoMT system to balance the load between delay and energy. However, the traditional learning models fraud on the data in the distributed IoMT system for healthcare applications are still a critical research problem in practice. The study devises a federated learning-based blockchain-enabled task scheduling (FL-BETS) framework with different dynamic heuristics. The study considers the different healthcare applications that have both hard constraint (e.g., deadline) and resource energy consumption (e.g., soft constraint) during execution on the distributed fog and cloud nodes. The goal of FL-BETS is to identify and ensure the privacy preservation and fraud of data at various levels, such as local fog nodes and remote clouds, with minimum energy consumption and delay, and to satisfy the deadlines of healthcare workloads. The study introduces the mathematical model. In the performance evaluation, FL-BETS outperforms all existing machine learning and blockchain mechanisms in fraud analysis, data validation, energy and delay constraints for healthcare applications.


Subject(s)
Blockchain , Internet of Things , Humans , Privacy , Delivery of Health Care , Computer Communication Networks
16.
IEEE J Biomed Health Inform ; 27(2): 673-683, 2023 02.
Article in English | MEDLINE | ID: mdl-35635827

ABSTRACT

The Internet of things (IoT) is a network of technologies that support a wide variety of healthcare workflow applications to facilitate users' obtaining real-time healthcare services. Many patients and doctors' hospitals use different healthcare services to monitor their healthcare and save their records on the servers. Healthcare sensors are widely linked to the outside world for different disease classifications and questions. These applications are extraordinarily dynamic and use mobile devices to roam several locales. However, healthcare apps confront two significant challenges: data privacy and the cost of application execution services. This work presents the mobility-aware security dynamic service composition (MSDSC) algorithmic framework for workflow healthcare based on serverless, serverless, and restricted Boltzmann machine mechanisms. The study suggests the stochastic deep neural network trains probabilistic models at each phase of the process, including service composition, task sequencing, security, and scheduling. The experimental setup and findings revealed that the developed system-based methods outperform traditional methods by 25% in terms of safety and 35% in application cost.


Subject(s)
Delivery of Health Care , Internet of Things , Humans , Privacy , Internet
17.
IEEE Rev Biomed Eng ; 16: 653-671, 2023.
Article in English | MEDLINE | ID: mdl-35653442

ABSTRACT

Fetal phonocardiography (fPCG) is receiving attention as it is a promising method for continuous fetal monitoring due to its non-invasive and passive nature. However, it suffers from the interference from various sources, overlapping the desired signal in the time and frequency domains. This paper introduces the state-of-the-art methods used for fPCG signal extraction and processing, as well as means of detection and classification of various features defining fetal health state. It also provides an extensive summary of remaining challenges, along with the practical insights and suggestions for the future research directions.


Subject(s)
Algorithms , Heart Rate, Fetal , Pregnancy , Female , Humans , Phonocardiography/methods , Fetal Monitoring/methods , Signal Processing, Computer-Assisted
18.
Sci Rep ; 12(1): 20159, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36418487

ABSTRACT

This paper introduces a novel algorithm for effective and accurate extraction of non-invasive fetal electrocardiogram (NI-fECG). In NI-fECG based monitoring, the useful signal is measured along with other signals generated by the pregnant women's body, especially maternal electrocardiogram (mECG). These signals are more distinct in magnitude and overlap in time and frequency domains, making the fECG extraction extremely challenging. The proposed extraction method combines the Grey wolf algorithm (GWO) with sequential analysis (SA). This innovative combination, forming the GWO-SA method, optimises the parameters required to create a template that matches the mECG, which leads to an accurate elimination of the said signal from the input composite signal. The extraction system was tested on two databases consisting of real signals, namely, Labour and Pregnancy. The databases used to test the algorithms are available on a server at the generalist repositories (figshare) integrated with Matonia et al. (Sci Data 7(1):1-14, 2020). The results show that the proposed method extracts the fetal ECG signal with an outstanding efficacy. The efficacy of the results was evaluated based on accurate detection of the fQRS complexes. The parameters used to evaluate are as follows: accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and F1 score. Due to the stochastic nature of the GWO algorithm, ten individual runs were performed for each record in the two databases to assure stability as well as repeatability. Using these parameters, for the Labour dataset, we achieved an average ACC of 94.60%, F1 of 96.82%, SE of 97.49%, and PPV of 98.96%. For the Pregnancy database, we achieved an average ACC of 95.66%, F1 of 97.44%, SE of 98.07%, and PPV of 97.44%. The obtained results show that the fHR related parameters were determined accurately for most of the records, outperforming the other state-of-the-art approaches. The poorer quality of certain signals have caused deviation from the estimated fHR for certain records in the databases. The proposed algorithm is compared with certain well established algorithms, and has proven to be accurate in its fECG extractions.


Subject(s)
Fetal Monitoring , Signal Processing, Computer-Assisted , Female , Pregnancy , Humans , Fetal Monitoring/methods , Electrocardiography/methods , Algorithms , Databases, Factual
19.
Sensors (Basel) ; 22(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36236621

ABSTRACT

Epilepsy is a very common disease affecting at least 1% of the population, comprising a number of over 50 million people. As many patients suffer from the drug-resistant version, the number of potential treatment methods is very small. However, since not only the treatment of epilepsy, but also its proper diagnosis or observation of brain signals from recordings are important research areas, in this paper, we address this very problem by developing a reliable technique for removing spikes and sharp transients from the baseline of the brain signal using a morphological filter. This allows much more precise identification of the so-called epileptic zone, which can then be resected, which is one of the methods of epilepsy treatment. We used eight patients with 5 KHz data set and depended upon the Staba 2002 algorithm as a reference to detect the ripples. We found that the average sensitivity and false detection rate of our technique are significant, and they are ∼94% and ∼14%, respectively.


Subject(s)
Electroencephalography , Epilepsy , Algorithms , Brain , Brain Mapping , Electroencephalography/methods , Epilepsy/diagnosis , Humans
20.
Sensors (Basel) ; 22(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36298336

ABSTRACT

The field of advanced digital signal processing methods is one of the fastest developing scientific and technical disciplines, and is important in the field of Shunt Active Power Filter control methods. Shunt active power filters are highly desirable to minimize losses due to the increase in the number of nonlinear loads (deformed power). Currently, there is rapid development in new adaptive, non-adaptive, and especially hybrid methods of digital signal processing. Nowadays, modern methods of digital signal processing maintain a key role in research and industrial applications. Many of the best practices that have been used to control shunt active power in industrial practice for decades are now being surpassed in favor of new progressive approaches. This systematic research review classifies the importance of using advanced signal processing methods in the field of shunt active power filter control methods and summarizes the extant harmonic extraction methods, from the conventional approach to new progressive methods using genetic algorithms, artificial intelligence, and machine learning. Synchronization techniques are described and compared as well.


Subject(s)
Algorithms , Artificial Intelligence , Signal Processing, Computer-Assisted , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...